事务?

1、事务的特性:原子性、一致性、隔离性、持久性  (ACID)
2、多事务同时执行的时候,可能会出现的问题:脏读、不可重复读、幻读
3、事务隔离级别:读未提交、读提交、可重复读、串行化
4、不同事务隔离级别的区别:
读未提交:一个事务还未提交,它所做的变更就可以被别的事务看到
读提交:一个事务提交之后,它所做的变更才可以被别的事务看到
可重复读:一个事务执行过程中看到的数据是一致的。未提交的更改对其他事务是不可见的
串行化:对应一个记录会加读写锁,出现冲突的时候,后访问的事务必须等前一个事务执行完成才能继续执行

更好理解:

读未提交:别人改数据的事务尚未提交,我在我的事务中也能读到。
读已提交:别人改数据的事务已经提交,我在我的事务中才能读到。
可重复读:别人改数据的事务已经提交,我在我的事务中也不去读。
串行:我的事务尚未提交,别人就别想改数据。

5、配置隔离级别方法:启动参数transaction-isolation
6、事务隔离的实现:每条记录在更新的时候都会同时记录一条回滚操作。同一条记录在系统中可以存在多个版本,这就是数据库的多版本并发控制(MVCC)。
7、回滚日志什么时候删除?系统会判断当没有事务需要用到这些回滚日志的时候,回滚日志会被删除。
8、什么时候不需要了?当系统里么有比这个回滚日志更早的read-view的时候。
9、为什么尽量不要使用长事务。长事务意味着系统里面会存在很老的事务视图,在这个事务提交之前,回滚记录都要保留,这会导致大量占用存储空间。除此之外,长事务还占用锁资源,可能会拖垮库。
10、事务启动方式:一、显式启动事务语句,begin或者start transaction,提交commit,回滚rollback;二、set autocommit=0,该命令会把这个线程的自动提交关掉。这样只要执行一个select语句,事务就启动,并不会自动提交,直到主动执行commit或rollback或断开连接。
11、建议使用方法一,如果考虑多一次begin交互问题,可以使用commit work and chain语法。在autocommit=1的情况下用begin显式启动事务,如果执行commit则提交事务。如果执行commit work and chain则提交事务并自动启动下一个事务。

索引?

1.索引的作用:提高数据查询效率
2.常见索引模型:哈希表、有序数组、搜索树
3.哈希表:键 – 值(key – value)。
4.哈希思路:把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置
5.哈希冲突的处理办法:链表
6.哈希表适用场景:只有等值查询的场景
7.有序数组:按顺序存储。查询用二分法就可以快速查询,时间复杂度是:O(log(N))
8.有序数组查询效率高,更新效率低
9.有序数组的适用场景:静态存储引擎。
10.二叉搜索树:每个节点的左儿子小于父节点,父节点又小于右儿子
11.二叉搜索树:查询时间复杂度O(log(N)),更新时间复杂度O(log(N))
12.数据库存储大多不适用二叉树,因为树高过高,会适用N叉树
13.InnoDB中的索引模型:B+Tree

B树每个结点放的是(索引+记录)占内存,B+树非叶子放的是索引,叶子放的是(索引+记录),innodb B+树叶子结点都是用双向链表连起来的,方便查询

14.索引类型:主键索引、非主键索引
主键索引的叶子节点value存的是整行的数据(聚簇索引),非主键索引的叶子节点value是主键的值(二级索引)
15.主键索引和普通索引的区别:主键索引只要搜索ID这个B+Tree即可拿到数据。普通索引先搜索索引拿到主键值,再到主键索引树搜索一次(回表)
16.一个数据页满了,按照B+Tree算法,新增加一个数据页,叫做页分裂,会导致性能下降。空间利用率降低大概50%。当相邻的两个数据页利用率很低的时候会做数据页合并,合并的过程是分裂过程的逆过程。
17.从性能和存储空间方面考量,自增主键往往是更合理的选择。

  • tips

  • 1、覆盖索引:如果查询条件使用的是普通索引(或是联合索引的最左原则字段),查询结果是联合索引的字段或是主键,不用回表操作,直接返回结果,减少IO磁盘读写读取正行数据
  • 2、最左前缀:联合索引的最左 N 个字段,也可以是字符串索引的最左 M 个字符
  • 3、联合索引:根据创建联合索引的顺序,以最左原则进行where检索,比如(age,name)以age=1 或 age= 1 and name=‘张三’可以使用索引,单以name=‘张三’ 不会使用索引,考虑到存储空间的问题,还请根据业务需求,将查找频繁的数据进行靠左创建索引。
  • 4、索引下推:like ‘hello%’and age >10 检索,MySQL5.6版本之前,会对匹配的数据进行回表查询。5.6版本后,会先过滤掉age<10的数据,再进行回表查询,减少回表率,提升检索速度

 锁?

根据加锁范围:MySQL里面的锁可以分为:全局锁、表级锁、行级锁

一、全局锁:
对整个数据库实例加锁。
MySQL提供加全局读锁的方法:Flush tables with read lock(FTWRL)
这个命令可以使整个库处于只读状态。使用该命令之后,数据更新语句、数据定义语句和更新类事务的提交语句等操作都会被阻塞。
使用场景:全库逻辑备份。
风险:
1.如果在主库备份,在备份期间不能更新,业务停摆
2.如果在从库备份,备份期间不能执行主库同步的binlog,导致主从延迟
官方自带的逻辑备份工具mysqldump,当mysqldump使用参数–single-transaction的时候,会启动一个事务,确保拿到一致性视图。而由于MVCC的支持,这个过程中数据是可以正常更新的。

一致性读是好,但是前提是引擎要支持这个隔离级别。
如果要全库只读,为什么不使用set global readonly=true的方式?
1.在有些系统中,readonly的值会被用来做其他逻辑,比如判断主备库。所以修改global变量的方式影响太大。
2.在异常处理机制上有差异。如果执行FTWRL命令之后由于客户端发生异常断开,那么MySQL会自动释放这个全局锁,整个库回到可以正常更新的状态。而将整个库设置为readonly之后,如果客户端发生异常,则数据库就会一直保持readonly状态,这样会导致整个库长时间处于不可写状态,风险较高。
二、表级锁
MySQL里面表级锁有两种,一种是表锁,一种是元数据所(meta data lock,MDL)
表锁的语法是:lock tables … read/write
可以用unlock tables主动释放锁,也可以在客户端断开的时候自动释放。lock tables语法除了会限制别的线程的读写外,也限定了本线程接下来的操作对象。
对于InnoDB这种支持行锁的引擎,一般不使用lock tables命令来控制并发,毕竟锁住整个表的影响面还是太大。
MDL:不需要显式使用,在访问一个表的时候会被自动加上。
MDL的作用:保证读写的正确性。
在对一个表做增删改查操作的时候,加MDL读锁;当要对表做结构变更操作的时候,加MDL写锁。
读锁之间不互斥。读写锁之间,写锁之间是互斥的,用来保证变更表结构操作的安全性。
MDL 会直到事务提交才会释放,在做表结构变更的时候,一定要小心不要导致锁住线上查询和更新。

三、行锁:

两阶段锁:在 InnoDB 事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放, 而是要等到事务结束时才释放。
建议:如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放。
死锁:当并发系统中不同线程出现循环资源依赖,涉及的线程都在等待别的线程释放资源时,就会导致这几个线程都进入无限等待的状态。
解决方案:
1、通过参数 innodb_lock_wait_timeout 根据实际业务场景来设置超时时间,InnoDB引擎默认值是50s。
2、发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数 innodb_deadlock_detect 设置为 on,表示开启这个逻辑(默认是开启状态)。
如何解决热点行更新导致的性能问题?
1、如果你能确保这个业务一定不会出现死锁,可以临时把死锁检测关闭掉。一般不建议采用
2、控制并发度,对应相同行的更新,在进入引擎之前排队。这样在InnoDB内部就不会有大量的死锁检测工作了。
3、将热更新的行数据拆分成逻辑上的多行来减少锁冲突,但是业务复杂度可能会大大提高。